Перевод: со всех языков на русский

с русского на все языки

эффективная работа насоса

  • 1 efficient water pump performance

    Универсальный англо-русский словарь > efficient water pump performance

  • 2 mass

    1. нерациональный метод ограничения выбросов вредных веществ
    2. масса
    3. коммерциализация

     

    масса
    Мера инерции.
    Единица измерения

    кг
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

    2.13 коммерциализация: Предоставление изделия, охватываемого настоящим стандартом, на рынке страны за соответствующую плату или бесплатно с целью его распространения и/или использования.

    2.14 В настоящем стандарте применены следующие обозначения и сокращения

    2.14.1 Обозначения и единицы измерения показателей, определяемых при испытаниях (см. таблицу 1).

    Таблица 1

    Обозначение

    Наименование показателя

    показателя

    единицы измерения показателя

    Ар

    м2

    Площадь поперечного сечения изокинетического пробоотборника

    Ат

    м2

    Площадь поперечного сечения выпускной трубы

    aver

    Средневзвешенные величины:

    м3

    расход потока;

    кг/ч

    масса потока;

    г/(кВт · ч)

    удельный выброс

    a

    -

    Углеродный коэффициент топлива

    с1

    -

    Углерод С1, эквивалентный углеводороду

    conc

    млн-1 или объемная доля, %

    Концентрация (с индексом компонента)

    concc

    млн-1 или объемная доля, %

    Фоновая скорректированная концентрация

    concd

    млн-1 или объемная доля, %

    Концентрация разбавляющего воздуха

    DF

    -

    Коэффициент разбавления

    fa

    -

    Лабораторный атмосферный коэффициент

    FFH

    -

    Удельный коэффициент топлива, используемый для расчета влажного состояния по сухому состоянию

    GAIRW

    кг/ч

    Массовый расход воздуха на впуске во влажном состоянии

    GAIRD

    кг/ч

    Массовый расход воздуха на впуске в сухом состоянии

    GDILW

    кг/ч

    Расход разбавляющего воздуха во влажном состоянии

    GEDFW

    кг/ч

    Эквивалентный массовый расход разбавленных отработавших газов во влажном состоянии

    GEXHW

    кг/ч

    Массовый расход отработавших газов во влажном состоянии

    GFUEL

    кг/ч

    Массовый расход топлива

    GTOTW

    кг/ч

    Массовый расход разбавленных отработавших газов во влажном состоянии

    HREF

    г/кг

    Исходная абсолютная влажность 10,71 г/кг для расчета NOx и поправочных коэффициентов на конкретную влажность

    на

    г/кг

    Абсолютная влажность воздуха на выпуске

    Hd

    г/кг

    Абсолютная влажность разбавляющего воздуха

    i

    -

    Нижний индекс, обозначающий i-й режим

    KH

    -

    Поправочный коэффициент на влажность для NOx

    Kp

    -

    Поправочный коэффициент на влажность для вредных частиц

    KW,a

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для воздуха на впуске

    KW,d

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавляющего воздуха

    KW,e

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавленных отработавших газов

    KW,r

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для первичных отработавших газов

    L

    %

    Крутящий момент в процентах максимального крутящего момента

    mass

    г/ч

    Массовый расход (интенсивность потока). Указанное обозначение используется в качестве нижнего индекса

    MDIL

    кг

    Масса пробы разбавляющего воздуха, прошедшей через фильтры для отбора проб вредных частиц

    MSAM

    кг

    Масса пробы разбавленных отработавших газов, прошедшей через фильтры для отбора проб вредных частиц

    Md

    мг

    Отобранная масса пробы вредных частиц в разбавляющем воздухе

    MS

    мг

    Отобранная масса пробы вредных частиц

    pa

    кПа

    Давление насыщенного пара при испытаниях (ИСО 3046-1 [1]: psy)

    pb

    кПа

    Полное барометрическое давление (ИСО 3046-1 [1]:

    рх- полное барометрическое давление при местных окружающих условиях; рy- полное барометрическое давление при испытаниях)

    pd

    кПа

    Давление насыщения пара разбавляющего воздуха

    ps

    кПа

    Сухое атмосферное давление

    P

    кВт

    Мощность без поправки на торможение

    Pae

    кВт

    Общая мощность, поглощаемая вспомогательным оборудованием, установленным для проведения испытания, которое не требуется в соответствии с 2.8

    PM

    кВт

    Максимальная мощность (приложение А)

    Pm

    кВт

    Мощность, измеренная в различных режимах испытания

    q

    -

    Коэффициент разбавления

    r

    -

    Отношение площадей поперечного сечения изокинетического пробоотборника и выпускной трубы

    Ra

    %

    Относительная влажность воздуха на впуске

    Rd

    %

    Относительная влажность разбавляющего воздуха

    Rf

    -

    Коэффициент чувствительности FID

    s

    кВт

    Мощность, определяемая на динамометрическом стенде

    Ta

    К

    Абсолютная температура воздуха на впуске

    TDd

    К

    Абсолютная точка росы

    tsc

    К

    Температура воздуха промежуточного охлаждения

    Tref

    К

    Исходная температура [воздуха, поступающего в зону горения 298 К (25 °С)]

    TSCRef

    К

    Исходная температура воздуха промежуточного охлаждения

    VAIRD

    м3

    Объемный расход воздуха на впуске в сухом состоянии

    VAIRW

    м3

    Объемный расход воздуха на впуске во влажном состоянии

    VDIL

    м3

    Объем пробы разбавляющего воздуха, прошедшего через фильтры отбора проб вредных частиц

    VDILW

    м3

    Объемный расход разбавляющего воздуха во влажном состоянии

    VEDFW

    м3

    Объемный эквивалентный расход разбавленного отработавшего газа во влажном состоянии

    VEXHD

    м3

    Объемный расход отработавших газов в сухом состоянии

    VEXHW

    м3

    Объемный расход отработавших газов во влажном состоянии

    VSAM

    м3

    Объем пробы, прошедшей через фильтры отбора проб вредных частиц

    VTOTW

    м3

    Объемный расход разбавленных отработавших газов во влажном состоянии

    WF

    -

    Теоретический коэффициент весомости режима

    WFE

    -

    Фактический коэффициент весомости режима

    Источник: ГОСТ Р 41.96-2005: Единообразные предписания, касающиеся двигателей с воспламенением от сжатия, предназначенных для установки на сельскохозяйственных и лесных тракторах и внедорожной технике, в отношении выброса вредных веществ этими двигателями оригинал документа

    2.1.32 нерациональный метод ограничения выбросов вредных веществ: Любой метод или способ, который при эксплуатации ТС в нормальных условиях уменьшает эффективность системы ограничения выбросов вредных веществ до уровня ниже предполагаемого при использовании предписанных методов определения концентрации выбросов вредных веществ.

    2.2 В настоящем стандарте применены следующие обозначения и сокращения:

    2.2.1 Обозначения и единицы измерения показателей, определяемых в испытаниях

    Обозначение

    Наименование показателя

    показателя

    единицы измерения показателя

    АР

    м2

    Площадь поперечного сечения изокинетического пробоотборника

    АТ

    м2

    Площадь поперечного сечения выпускной трубы

    СЕЕ

    -

    Эффективность по этану

    СЕМ

    -

    Эффективность по метану

    С1

    -

    Углеводороды, эквивалентные углероду С1

    сопс

    млн-1 или объемная доля, %

    Концентрация. Указанное обозначение используется в качестве нижнего индекса

    D0

    м3

    Отрезок, отсекаемый на координатной оси калибровочной функции PDP

    DF

    -

    Коэффициент разбавления

    D

    -

    Константа функции Бесселя

    Е

    -

    Константа функции Бесселя

    EZ

    г/(кВт×ч)

    Интерполированный выброс NOx в контрольной точке

    fa

    -

    Лабораторный атмосферный коэффициент

    fc

    с-1

    Частота, отсекаемая фильтром Бесселя

    FFH

    -

    Удельный коэффициент топлива для расчета влажного состояния по сухому состоянию

    Fs

    -

    Стехиометрический коэффициент

    GAIRV

    кг/ч

    Массовый расход воздуха на впуске во влажном состоянии

    GAIRD

    кг/ч

    Массовый расход воздуха на впуске в сухом состоянии

    GDILW

    кг/ч

    Массовый расход разбавленного воздуха во влажном состоянии

    GEDFW

    кг/ч

    Эквивалентный массовый расход разбавленных отработавших газов во влажном состоянии

    GEXHW

    кг/ч

    Массовый расход отработавших газов во влажном состоянии

    GFUEL

    кг/ч

    Массовый расход топлива

    GTOTW

    кг/ч

    Массовый расход разбавленных отработавших газов во влажном состоянии

    H

    мДж/м3

    Теплотворная способность

    HREF

    г/кг

    Исходная абсолютная влажность (10,71 г/кг)

    Ha

    г/кг

    Абсолютная влажность воздуха на впуске

    Hd

    г/кг

    Абсолютная влажность разбавляющего воздуха

    HTCART

    моль/моль

    Водородно-углеродное число

    i

    -

    Нижний индекс, обозначающий i-й режим

    К

    -

    Константа Бесселя

    k

    м-1

    Коэффициент светопоглощения

    KH, D

    -

    Поправочный коэффициент на влажность для NОx дизельного двигателя

    KH, G

    -

    Поправочный коэффициент на влажность для NOx газового двигателя

    Kv

    Калибровочная функция трубки Вентури CFV

    KW, a

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для воздуха на впуске

    KW, d

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавляющего воздуха

    KW, e

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавленных отработавших газов

    KW, r

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для неразбавленных отработавших газов

    L

    %

    Крутящий момент в процентах максимального крутящего момента испытуемого двигателя

    La

    м

    Эффективная база дымомера

    т

    Коэффициент наклона калибровочной функции насоса PDP

    mass

    г/ч или г

    Массовый расход (интенсивность потока). Указанное обозначение используется в качестве нижнего индекса

    MDIL

    кг

    Масса пробы разбавляющего воздуха, прошедшей через фильтры для отбора проб вредных частиц

    Md

    мг

    Уловленная масса проб вредных частиц в разбавляющем воздухе

    Мf

    мг

    Уловленная масса проб вредных частиц

    Мf, p

    мг

    Масса проб вредных частиц, уловленная на основном фильтре

    Мf, b

    мг

    Масса проб вредных частиц, уловленная на вспомогательном фильтре

    MSAM

    кг

    Масса пробы разбавленных отработавших газов, прошедших через фильтры для отбора вредных частиц

    MSEK

    кг

    Масса вторичного разбавляющего воздуха

    MTOTW

    кг

    Общая масса пробы CVS за цикл во влажном состоянии

    MTOTW, i

    кг

    Мгновенная масса пробы CVS во влажном состоянии

    N

    %

    Дымность

    NP

    -

    Общее число оборотов насоса PDP за цикл

    NP, i

    -

    Число оборотов насоса PDP в течение определенного промежутка времени

    n

    мин-1

    Частота вращения двигателя

    np

    с-1

    Частота вращения насоса PDP

    nhi

    мин-1

    Высокая частота вращения двигателя

    nlo

    мин-1

    Низкая частота вращения двигателя

    nref

    мин-1

    Исходная частота вращения двигателя для испытания ETC

    pa

    кПа

    Давление насыщения пара на впуске воздуха в двигатель

    pA

    кПа

    Абсолютное давление

    pB

    кПа

    Полное давление

    pd

    кПа

    Давление насыщения пара разбавляющего воздуха

    ps

    кПа

    Сухое атмосферное давление

    p1

    кПа

    Снижение давления на входе в насос

    P(a)

    кВт

    Мощность, поглощаемая вспомогательными устройствами, устанавливаемыми при проведении испытаний

    P(b)

    кВт

    Мощность, поглощаемая вспомогательными устройствами, демонтируемыми при проведении испытания

    P(n)

    кВт

    Некорректированная полезная мощность

    P(m)

    кВт

    Мощность, измеренная на испытательном стенде

    W

    -

    Константа Бесселя

    QS

    м3

    Объемный расход воздуха в трубке Вентури CFV

    q

    -

    Коэффициент разбавления

    r

    -

    Отношение площадей поперечного сечения изокинетического пробоотборника и выпускной трубы

    Ra

    %

    Относительная влажность воздуха на впуске

    Rd

    %

    Относительная влажность разбавляющего воздуха

    Si

    m-1

    Мгновенное значение дымности

    Sl

    -

    Коэффициент l-смещения

    T

    К

    Абсолютная температура

    Rf

    -

    Коэффициент чувствительности FID

    r

    кг/м3

    Плотность

    S

    кВт

    Мощность, на которую отрегулирован динамометр

    Та

    К

    Абсолютная температура воздуха на впуске

    t

    с

    Время измерения

    te

    с

    Время срабатывания электрического сигнала

    tf

    с

    Время реакции фильтра для функции Бесселя

    tp

    с

    Физическое время реакции

    Dt

    с

    Временной интервал между последовательными моментами считывания данных о дымности (= 1/частота отбора проб)

    Dt1

    с

    Временной интервал между значениями мгновенных расходов в трубке Вентури CFV

    t

    %

    Прозрачность дыма

    V0

    м3/об

    Калибровочная функция объемного расхода насоса PDP в эксплуатационных условиях (на 1 оборот вала насоса)

    W

    -

    Число Воббе

    Wact

    КВт×ч

    Фактическая работа за цикл испытания ETC

    Wref

    КВт×ч

    Исходная работа за цикл испытания ETC

    WF

    -

    Коэффициент весомости

    WFE

    -

    Эффективный коэффициент весомости

    X0

    м3/oб

    Калибровочная функция объемного расхода воздуха насоса PDP (на 1 оборот вала насоса)

    Yi

    м-1

    Среднее значение коэффициента светопоглощения за 1 с по Бесселю

    2.2.2 Обозначения химических компонентов

    СН4 - метан;

    С2Н6 - этан;

    С2Н5ОН - этанол;

    С3Н8 - пропан;

    СО - оксид углерода;

    DOP - диоктилфталат;

    СО2 - диоксид углерода;

    НС - углеводороды;

    NMHC - (non-methane hydrocarbons) углеводороды, не содержащие метан;

    x - оксиды азота;

    NO - оксид азота;

    2 - диоксид азота;

    РТ - (particulates) вредные частицы.

    ТНС - (total hydrocarbons) общее количество углеводородов.

    2.2.3 Сокращения

    CFV - (critical flow venturi) трубка Вентури с критическим расходом;

    CLD - (chemiluminescent detector) хемилюминесцентный детектор;

    CVS - (constant volume sampling) отбор проб при постоянном объеме;

    ELR - (European load response test) европейский цикл испытаний реакции двигателя на изменение нагрузки;

    ESC - (European steady state cycle) европейский цикл испытаний в установившихся режимах;

    ETC - (European transient cycle) европейский цикл испытаний в переходных режимах;

    FID - (flame ionization detector) плазменно-ионизационный детектор;

    GC - (gas chromatograph) газовый хроматограф;

    HCLD - (heated chemiluminescent detector) нагреваемый хемилюминесцентный детектор;

    HFID - (heated flame ionization detector) нагреваемый плазменно-ионизационный детектор;

    LPG - (liquefied petroleum gas) сжиженный нефтяной газ;

    NDIR - (non-dispersive infrared) недисперсионный инфракрасный анализатор;

    NG - (natural gas) природный газ;

    NMC - (non-methane cutter) отделитель фракций, не содержащих метан;

    PDP - (positive displacement pomp) насос с объемным регулированием;

    PSS - (particulate sampling system) система отбора проб вредных частиц.

    Источник: ГОСТ Р 41.49-2003: Единообразные предписания, касающиеся сертификации двигателей с воспламенением от сжатия и двигателей, работающих на природном газе, а также двигателей с принудительным зажиганием, работающих на сжиженном нефтяном газе, и транспортных средств, оснащенных двигателями с воспламенением от сжатия, двигателями, работающими на природном газе, и двигателями с принудительным зажиганием, работающими на сжиженном нефтяном газе. В отношении выбросов вредных веществ оригинал документа

    Англо-русский словарь нормативно-технической терминологии > mass

  • 3 HTCART

    1. нерациональный метод ограничения выбросов вредных веществ

    2.1.32 нерациональный метод ограничения выбросов вредных веществ: Любой метод или способ, который при эксплуатации ТС в нормальных условиях уменьшает эффективность системы ограничения выбросов вредных веществ до уровня ниже предполагаемого при использовании предписанных методов определения концентрации выбросов вредных веществ.

    2.2 В настоящем стандарте применены следующие обозначения и сокращения:

    2.2.1 Обозначения и единицы измерения показателей, определяемых в испытаниях

    Обозначение

    Наименование показателя

    показателя

    единицы измерения показателя

    АР

    м2

    Площадь поперечного сечения изокинетического пробоотборника

    АТ

    м2

    Площадь поперечного сечения выпускной трубы

    СЕЕ

    -

    Эффективность по этану

    СЕМ

    -

    Эффективность по метану

    С1

    -

    Углеводороды, эквивалентные углероду С1

    сопс

    млн-1 или объемная доля, %

    Концентрация. Указанное обозначение используется в качестве нижнего индекса

    D0

    м3

    Отрезок, отсекаемый на координатной оси калибровочной функции PDP

    DF

    -

    Коэффициент разбавления

    D

    -

    Константа функции Бесселя

    Е

    -

    Константа функции Бесселя

    EZ

    г/(кВт×ч)

    Интерполированный выброс NOx в контрольной точке

    fa

    -

    Лабораторный атмосферный коэффициент

    fc

    с-1

    Частота, отсекаемая фильтром Бесселя

    FFH

    -

    Удельный коэффициент топлива для расчета влажного состояния по сухому состоянию

    Fs

    -

    Стехиометрический коэффициент

    GAIRV

    кг/ч

    Массовый расход воздуха на впуске во влажном состоянии

    GAIRD

    кг/ч

    Массовый расход воздуха на впуске в сухом состоянии

    GDILW

    кг/ч

    Массовый расход разбавленного воздуха во влажном состоянии

    GEDFW

    кг/ч

    Эквивалентный массовый расход разбавленных отработавших газов во влажном состоянии

    GEXHW

    кг/ч

    Массовый расход отработавших газов во влажном состоянии

    GFUEL

    кг/ч

    Массовый расход топлива

    GTOTW

    кг/ч

    Массовый расход разбавленных отработавших газов во влажном состоянии

    H

    мДж/м3

    Теплотворная способность

    HREF

    г/кг

    Исходная абсолютная влажность (10,71 г/кг)

    Ha

    г/кг

    Абсолютная влажность воздуха на впуске

    Hd

    г/кг

    Абсолютная влажность разбавляющего воздуха

    HTCART

    моль/моль

    Водородно-углеродное число

    i

    -

    Нижний индекс, обозначающий i-й режим

    К

    -

    Константа Бесселя

    k

    м-1

    Коэффициент светопоглощения

    KH, D

    -

    Поправочный коэффициент на влажность для NОx дизельного двигателя

    KH, G

    -

    Поправочный коэффициент на влажность для NOx газового двигателя

    Kv

    Калибровочная функция трубки Вентури CFV

    KW, a

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для воздуха на впуске

    KW, d

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавляющего воздуха

    KW, e

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавленных отработавших газов

    KW, r

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для неразбавленных отработавших газов

    L

    %

    Крутящий момент в процентах максимального крутящего момента испытуемого двигателя

    La

    м

    Эффективная база дымомера

    т

    Коэффициент наклона калибровочной функции насоса PDP

    mass

    г/ч или г

    Массовый расход (интенсивность потока). Указанное обозначение используется в качестве нижнего индекса

    MDIL

    кг

    Масса пробы разбавляющего воздуха, прошедшей через фильтры для отбора проб вредных частиц

    Md

    мг

    Уловленная масса проб вредных частиц в разбавляющем воздухе

    Мf

    мг

    Уловленная масса проб вредных частиц

    Мf, p

    мг

    Масса проб вредных частиц, уловленная на основном фильтре

    Мf, b

    мг

    Масса проб вредных частиц, уловленная на вспомогательном фильтре

    MSAM

    кг

    Масса пробы разбавленных отработавших газов, прошедших через фильтры для отбора вредных частиц

    MSEK

    кг

    Масса вторичного разбавляющего воздуха

    MTOTW

    кг

    Общая масса пробы CVS за цикл во влажном состоянии

    MTOTW, i

    кг

    Мгновенная масса пробы CVS во влажном состоянии

    N

    %

    Дымность

    NP

    -

    Общее число оборотов насоса PDP за цикл

    NP, i

    -

    Число оборотов насоса PDP в течение определенного промежутка времени

    n

    мин-1

    Частота вращения двигателя

    np

    с-1

    Частота вращения насоса PDP

    nhi

    мин-1

    Высокая частота вращения двигателя

    nlo

    мин-1

    Низкая частота вращения двигателя

    nref

    мин-1

    Исходная частота вращения двигателя для испытания ETC

    pa

    кПа

    Давление насыщения пара на впуске воздуха в двигатель

    pA

    кПа

    Абсолютное давление

    pB

    кПа

    Полное давление

    pd

    кПа

    Давление насыщения пара разбавляющего воздуха

    ps

    кПа

    Сухое атмосферное давление

    p1

    кПа

    Снижение давления на входе в насос

    P(a)

    кВт

    Мощность, поглощаемая вспомогательными устройствами, устанавливаемыми при проведении испытаний

    P(b)

    кВт

    Мощность, поглощаемая вспомогательными устройствами, демонтируемыми при проведении испытания

    P(n)

    кВт

    Некорректированная полезная мощность

    P(m)

    кВт

    Мощность, измеренная на испытательном стенде

    W

    -

    Константа Бесселя

    QS

    м3

    Объемный расход воздуха в трубке Вентури CFV

    q

    -

    Коэффициент разбавления

    r

    -

    Отношение площадей поперечного сечения изокинетического пробоотборника и выпускной трубы

    Ra

    %

    Относительная влажность воздуха на впуске

    Rd

    %

    Относительная влажность разбавляющего воздуха

    Si

    m-1

    Мгновенное значение дымности

    Sl

    -

    Коэффициент l-смещения

    T

    К

    Абсолютная температура

    Rf

    -

    Коэффициент чувствительности FID

    r

    кг/м3

    Плотность

    S

    кВт

    Мощность, на которую отрегулирован динамометр

    Та

    К

    Абсолютная температура воздуха на впуске

    t

    с

    Время измерения

    te

    с

    Время срабатывания электрического сигнала

    tf

    с

    Время реакции фильтра для функции Бесселя

    tp

    с

    Физическое время реакции

    Dt

    с

    Временной интервал между последовательными моментами считывания данных о дымности (= 1/частота отбора проб)

    Dt1

    с

    Временной интервал между значениями мгновенных расходов в трубке Вентури CFV

    t

    %

    Прозрачность дыма

    V0

    м3/об

    Калибровочная функция объемного расхода насоса PDP в эксплуатационных условиях (на 1 оборот вала насоса)

    W

    -

    Число Воббе

    Wact

    КВт×ч

    Фактическая работа за цикл испытания ETC

    Wref

    КВт×ч

    Исходная работа за цикл испытания ETC

    WF

    -

    Коэффициент весомости

    WFE

    -

    Эффективный коэффициент весомости

    X0

    м3/oб

    Калибровочная функция объемного расхода воздуха насоса PDP (на 1 оборот вала насоса)

    Yi

    м-1

    Среднее значение коэффициента светопоглощения за 1 с по Бесселю

    2.2.2 Обозначения химических компонентов

    СН4 - метан;

    С2Н6 - этан;

    С2Н5ОН - этанол;

    С3Н8 - пропан;

    СО - оксид углерода;

    DOP - диоктилфталат;

    СО2 - диоксид углерода;

    НС - углеводороды;

    NMHC - (non-methane hydrocarbons) углеводороды, не содержащие метан;

    x - оксиды азота;

    NO - оксид азота;

    2 - диоксид азота;

    РТ - (particulates) вредные частицы.

    ТНС - (total hydrocarbons) общее количество углеводородов.

    2.2.3 Сокращения

    CFV - (critical flow venturi) трубка Вентури с критическим расходом;

    CLD - (chemiluminescent detector) хемилюминесцентный детектор;

    CVS - (constant volume sampling) отбор проб при постоянном объеме;

    ELR - (European load response test) европейский цикл испытаний реакции двигателя на изменение нагрузки;

    ESC - (European steady state cycle) европейский цикл испытаний в установившихся режимах;

    ETC - (European transient cycle) европейский цикл испытаний в переходных режимах;

    FID - (flame ionization detector) плазменно-ионизационный детектор;

    GC - (gas chromatograph) газовый хроматограф;

    HCLD - (heated chemiluminescent detector) нагреваемый хемилюминесцентный детектор;

    HFID - (heated flame ionization detector) нагреваемый плазменно-ионизационный детектор;

    LPG - (liquefied petroleum gas) сжиженный нефтяной газ;

    NDIR - (non-dispersive infrared) недисперсионный инфракрасный анализатор;

    NG - (natural gas) природный газ;

    NMC - (non-methane cutter) отделитель фракций, не содержащих метан;

    PDP - (positive displacement pomp) насос с объемным регулированием;

    PSS - (particulate sampling system) система отбора проб вредных частиц.

    Источник: ГОСТ Р 41.49-2003: Единообразные предписания, касающиеся сертификации двигателей с воспламенением от сжатия и двигателей, работающих на природном газе, а также двигателей с принудительным зажиганием, работающих на сжиженном нефтяном газе, и транспортных средств, оснащенных двигателями с воспламенением от сжатия, двигателями, работающими на природном газе, и двигателями с принудительным зажиганием, работающими на сжиженном нефтяном газе. В отношении выбросов вредных веществ оригинал документа

    Англо-русский словарь нормативно-технической терминологии > HTCART

  • 4 alarm management

    1. управление аварийными сигналами

     

    управление аварийными сигналами
    -
    [Интент]


    Переход от аналоговых систем к цифровым привел к широкому, иногда бесконтрольному использованию аварийных сигналов. Текущая программа снижения количества нежелательных аварийных сигналов, контроля, определения приоритетности и адекватного реагирования на такие сигналы будет способствовать надежной и эффективной работе предприятия.

    Если технология хороша, то, казалось бы, чем шире она применяется, тем лучше. Разве не так? Как раз нет. Больше не всегда означает лучше. Наступление эпохи микропроцессоров и широкое распространение современных распределенных систем управления (DCS) упростило подачу сигналов тревоги при любом сбое технологического процесса, поскольку затраты на это невелики или равны нулю. В результате в настоящее время на большинстве предприятий имеются системы, подающие ежедневно огромное количество аварийных сигналов и уведомлений, что мешает работе, а иногда приводит к катастрофическим ситуациям.

    „Всем известно, насколько важной является система управления аварийными сигналами. Но, несмотря на это, на производстве такие системы управления внедряются достаточно редко", - отмечает Тодд Стауффер, руководитель отдела маркетинга PCS7 в компании Siemens Energy & Automation. Однако события последних лет, среди которых взрыв на нефтеперегонном заводе BP в Техасе в марте 2005 г., в результате которого погибло 15 и получило травмы 170 человек, могут изменить отношение к данной проблеме. В отчете об этом событии говорится, что аварийные сигналы не всегда были технически обоснованы.

    Широкое распространение компьютеризированного оборудования и распределенных систем управления сделало более простым и быстрым формирование аварийных сигналов. Согласно новым принципам аварийные сигналы следует формировать только тогда, когда необходимы ответные действия оператора. (С разрешения Siemens Energy & Automation)

    Этот и другие подобные инциденты побудили специалистов многих предприятий пересмотреть программы управления аварийными сигналами. Специалисты пытаются найти причины непомерного роста числа аварийных сигналов, изучить и применить передовой опыт и содействовать разработке стандартов. Все это подталкивает многие компании к оценке и внедрению эталонных стандартов, таких, например, как Publication 191 Ассоциации пользователей средств разработки и материалов (EEMUA) „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке", которую многие называют фактическим стандартом систем управления аварийными сигналами. Тим Дональдсон, директор по маркетингу компании Iconics, отмечает: „Распределение и частота/колебания аварийных сигналов, взаимная корреляция, время реакции и изменения в действиях оператора в течение определенного интервала времени являются основными показателями отчетов, которые входят в стандарт EEMUA и обеспечивают полезную информацию для улучшения работы предприятия”. Помимо этого как конечные пользователи, так и поставщики поддерживают развитие таких стандартов, как SP-18.02 ISA «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности». (см. сопроводительный раздел „Стандарты, эталоны, передовой опыт" для получения более подробных сведений).

    Предполагается, что одной из причин взрыва на нефтеперегонном заводе BP в Техасе в 2005 г., в результате которого погибло 15 и получило ранения 170 человек, а также был нанесен значительный ущерб имуществу, стала неэффективная система аварийных сигналов.(Источник: Комиссия по химической безопасности и расследованию аварий США)

    На большинстве предприятий системы аварийной сигнализации очень часто имеют слишком большое количество аварийных сигналов. Это в высшей степени нецелесообразно. Показатели EEMUA являются эталонными. Они содержатся в Publication 191 (1999), „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Начало работы

    Наиболее важным представляется вопрос: почему так велико количество аварийных сигналов? Стауффер объясняет это следующим образом: „В эпоху аналоговых систем аварийные сигналы реализовывались аппаратно. Они должны были соответствующим образом разрабатываться и устанавливаться. Каждый аварийный сигнал имел реальную стоимость - примерно 1000 долл. США. Поэтому они выполнялись тщательно. С развитием современных DCS аварийные сигналы практически ничего не стоят, в связи с чем на предприятиях стремятся устанавливать все возможные сигналы".

    Характеристики «хорошего» аварийного сообщения

    В число базовых требований к аварийному сообщению, включенных в аттестационный документ EEMUA, входит ясное, непротиворечивое представление информации. На каждом экране дисплея:

    • Должно быть четко определено возникшее состояние;

    • Следует использовать терминологию, понятную для оператора;

    • Должна применяться непротиворечивая система сокращений, основанная на стандартном словаре сокращений для данной отрасли производства;

    • Следует использовать согласованную структуру сообщения;

    • Система не должна строиться только на основе теговых обозначений и номеров;

    • Следует проверить удобство работы на реальном производстве.

    Информация из Publication 191 (1999) EEMUA „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Качественная система управления аварийными сигналами должна опираться на руководящий документ. В стандарте ISA SP-18.02 «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности», предложен целостный подход, основанный на модели жизненного цикла, которая включает в себя определяющие принципы, обучение, контроль и аудит.

    Именно поэтому операторы сегодня часто сталкиваются с проблемой резкого роста аварийных сигналов. В соответствии с рекомендациями Publication 191 EEMUA средняя частота аварийных сигналов не должна превышать одного сигнала за 10 минут, или не более 144 сигналов в день. В большинстве отраслей промышленности показатели значительно выше и находятся в диапазоне 5-9 сигналов за 10 минут (см. таблицу Эталонные показатели для аварийных сигналов). Дэвид Гэртнер, руководитель служб управления аварийными сигналами в компании Invensys Process Systems, вспоминает, что при запуске производственной установки пяти операторам за полгода поступило 5 миллионов сигналов тревоги. „От одного из устройств было получено 550 000 аварийных сигналов. Устройство работает на протяжении многих месяцев, и до сих пор никто не решился отключить его”.

    Практика прошлых лет заключалась в том, чтобы использовать любые аварийные сигналы независимо от того - нужны они или нет. Однако в последнее время при конфигурировании систем аварийных сигналов исходят из необходимости ответных действий со стороны оператора. Этот принцип, который отражает фундаментальные изменения в разработке систем и взаимодействии операторов, стал основой проекта стандарта SP18 ISA. В этом документе дается следующее определение аварийного сигнала: „звуковой и/или визуальный способ привлечения внимания, указывающий оператору на неисправность оборудования, отклонения в технологическом процессе или аномальные условия эксплуатации, которые требуют реагирования”. При такой практике сигнал конфигурируется только в том случае, когда на него необходим ответ оператора.

    Адекватная реакция

    Особенно важно учитывать следующую рекомендацию: „Не следует ничего предпринимать в отношении событий, для которых нет измерительного инструмента (обычно программного)”.Высказывания Ника Сэнд-за, сопредседателя комитета по разработке стандартов для систем управления аварийными сигналами SP-18.00.02 Общества ISA и менеджера технологий управления процессами химического производства DuPont, подчеркивают необходимость контроля: „Система контроля должна сообщать - в каком состоянии находятся аварийные сигналы. По каким аварийным сигналам проводится техническое обслуживание? Сколько сигналов имеет самый высокий приоритет? Какие из них относятся к системе безопасности? Она также должна сообщать об эффективности работы системы. Соответствует ли ее работа вашим целям и основополагающим принципам?"

    Кейт Джоунз, старший менеджер по системам визуализации в Wonderware, добавляет: „Во многих отраслях промышленности, например в фармацевтике и в пищевой промышленности, уже сегодня требуется ведение баз данных по материалам и ингредиентам. Эта информация может также оказаться полезной при анализе аварийных сигналов. Мы можем установить комплект оборудования, работающего в реальном времени. Оно помогает определить место, где возникла проблема, с которой связан аварийный сигнал. Например, можно создать простые гистограммы частот аварийных сигналов. Можно сформировать отчеты об аварийных сигналах в соответствии с разными уровнями системы контроля, которая предоставляет сведения как для менеджеров, так и для исполнителей”.

    Представитель компании Invensys Гэртнер утверждает, что двумя основными элементами каждой программы управления аварийными сигналами должны быть: „хороший аналитический инструмент, с помощью которого можно определить устройства, подающие наибольшее количество аварийных сигналов, и эффективный технологический процесс, позволяющий объединить усилия персонала и технические средства для устранения неисправностей. Инструментарий помогает выявить источник проблемы. С его помощью можно определить наиболее частые сигналы, а также ложные и отвлекающие сигналы. Таким образом, мы можем выяснить, где и когда возникают аварийные сигналы, можем провести анализ основных причин и выяснить, почему происходит резкое увеличение сигналов, а также установить для них новые приоритеты. На многих предприятиях высокий приоритет установлен для всех аварийных сигналов. Это неприемлемое решение. Наиболее разумным способом распределения приоритетности является следующий: 5 % аварийных сигналов имеют приоритет № 1, 15% приоритет № 2, и 80% приоритет № 3. В этом случае оператор может отреагировать на те сигналы, которые действительно важны”.

    И, тем не менее, Марк МакТэвиш, руководитель группы решений в области управления аварийными сигналами и международных курсов обучения в компании Matrikon, отмечает: „Необходимо помнить, что программное обеспечение - это всего лишь инструмент, оно само по себе не является решением. Аварийные сигналы должны представлять собой исключительные случаи, которые указывают на события, выходящие за приемлемые рамки. Удачные программы управления аварийными сигналами позволяют добиться внедрения на производстве именно такого подхода. Они помогают инженерам изо дня в день управлять своими установками, обеспечивая надежный контроль качества и повышение производительности за счет снижения незапланированных простоев”.

    Система, нацеленная на оператора

    Тем не менее, даже наличия хорошей системы сигнализации и механизма контроля и анализа ее функционирования еще недостаточно. Необходимо следовать основополагающим принципам, руководящему документу, который должен стать фундаментом для всей системы аварийной сигнализации в целом, подчеркивает Сэндз, сопредседатель ISA SP18. При разработке стандарта „основное внимание мы уделяем не только рационализации аварийных сигналов, - говорит он, - но и жизненному циклу систем управления аварийными сигналами в целом, включая обучение, внесение изменений, совершенствование и периодический контроль на производственном участке. Мы стремимся использовать целостный подход к системе управления аварийными сигналами, построенной в соответствии с ISA 84.00.01, Функциональная безопасность: Системы безопасности с измерительной аппаратурой для сектора обрабатывающей промышленности». (см. диаграмму Модель жизненного цикла системы управления аварийными сигналами)”.

    «В данном подходе учитывается участие оператора. Многие недооценивают роль оператора,- отмечает МакТэвиш из Matrikon. - Система управления аварийными сигналами строится вокруг оператора. Инженерам трудно понять проблемы оператора, если они не побывают на его месте и не получат опыт управления аварийными сигналами. Они считают, что знают потребности оператора, но зачастую оказывается, что это не так”.

    Удобное отображение информации с помощью человеко-машинного интерфейса является наиболее существенным аспектом системы управления аварийными сигналами. Джонс из Wonderware говорит: „Аварийные сигналы перед поступлением к оператору должны быть отфильтрованы так, чтобы до оператора дошли нужные сообщения. Программное обеспечение предоставляет инструментарий для удобной конфигурации этих параметров, но также важны согласованность и подтверждение ответных действий”.

    Аварийный сигнал должен сообщать о том, что необходимо сделать. Например, как отмечает Стауффер из Siemens: „Когда специалист по автоматизации настраивает конфигурацию системы, он может задать обозначение для физического устройства в соответствии с системой идентификационных или контурных тегов ISA. При этом обозначение аварийного сигнала может выглядеть как LIC-120. Но оператору информацию представляют в другом виде. Для него это 'регулятор уровня для резервуара XYZ'. Если в сообщении оператору указываются неверные сведения, то могут возникнуть проблемы. Оператор, а не специалист по автоматизации является адресатом. Он - единственный, кто реагирует на сигналы. Сообщение должно быть сразу же абсолютно понятным для него!"

    Эдди Хабиби, основатель и главный исполнительный директор PAS, отмечает: „Эффективность деятельности оператора, которая существенно влияет на надежность и рентабельность предприятия, выходит за рамки совершенствования системы управления аварийными сигналами. Инвестиции в операторов являются такими же важными, как инвестиции в современные системы управления технологическим процессом. Нельзя добиться эффективности работы операторов без учета человеческого фактора. Компетентный оператор хорошо знает технологический процесс, имеет прекрасные навыки общения и обращения с людьми и всегда находится в состоянии готовности в отношении всех событий системы аварийных сигналов”. „До возникновения DCS, -продолжает он, - перед оператором находилась схема технологического процесса, на которой были указаны все трубопроводы и измерительное оборудование. С переходом на управление с помощью ЭВМ сотни схем трубопроводов и контрольно-измерительных приборов были занесены в компьютерные системы. При этом не подумали об интерфейсе оператора. Когда произошел переход от аналоговых систем и физических схем панели управления к цифровым системам с экранными интерфейсами, оператор утратил целостную картину происходящего”.

    «Оператору также требуется иметь необходимое образование в области технологических процессов, - подчеркивает Хабиби. - Мы часто недооцениваем роль обучения. Каковы принципы работы насоса или компрессора? Летчик гражданской авиации проходит бесчисленные часы подготовки. Он должен быть достаточно подготовленным перед тем, как ему разрешат взять на себя ответственность за многие жизни. В руках оператора химического производства возможно лежит не меньшее, если не большее количество жизней, но его подготовка обычно ограничивается двухмесячными курсами, а потом он учится на рабочем месте. Необходимо больше внимания уделять повышению квалификации операторов производства”.

    Рентабельность

    Эффективная система управления аварийными сигналами стоит времени и денег. Однако и неэффективная система также стоит денег и времени, но приводит к снижению производительности и повышению риска для человеческой жизни. Хотя создание новой программы управления аварийными сигналами или пересмотр и реконструкция старой может обескуражить кого угодно, существует масса информации по способам реализации и достижения целей системы управления аварийными сигналами.

    Наиболее важным является именно определение цели и способов ее достижения. МакТэвиш говорит, что система должна выдавать своевременные аварийные сигналы, которые не дублируют друг друга, адекватно отражают ситуацию, помогают оператору диагностировать проблему и определять эффективное направление действий. „Целью является поддержание производства в безопасном, надежном рабочем состоянии, которое позволяет выпускать качественный продукт. В конечном итоге целью является финансовая прибыль. Если на предприятии не удается достичь этих целей, то его существование находится под вопросом.

    Управление аварийными сигналами - это процесс, а не схема, - подводит итог Гэртнер из Invensys. - Это то же самое, что и производственная безопасность. Это - постоянный процесс, он никогда не заканчивается. Мы уже осознали высокую стоимость низкой эффективности и руководители предприятий больше не хотят за нее расплачиваться”.

    Автор: Джини Катцель, Control Engineering

    [ http://controlengrussia.com/artykul/article/hmi-upravlenie-avariinymi-signalami/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > alarm management

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»